close
標題:

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

maths

發問:

(2^2)*(3^3)+(2^3)*(3^2) (1/ab^1)^1 (1^1+2^2+3^3+4^4)^0 要列式 更新: 發錯..係(2^ -2)*(3^ -3)+(2^ -3)*(3^ -2) 同(1/ab^ -1)^ -1

最佳解答:

(2^2)*(3^3)+(2^3)*(3^2) = (2^2)*(3^2)*(3+2) = 4*9*5 = 180 (1/ab^1)^1 = (1/ab)^1 = 1/ab (1^1+2^2+3^3+4^4)^0 = (1+4+27+256)^0 = 1 2007-08-14 14:13:59 補充: OK, New questions(2^ -2)*(3^ -3) (2^ -3)*(3^ -2) = (1/22)*(1/33) (1/23)*(1/32)= (1/4)*(1/27) (1/8)*(1/9)= 1/108 1/72= 2/216 3/216= 5/216(1/ab^-1)^-1=(1/ab)^(-1*-1) Note: (x^a)^b = x^(ab)=(1/ab)^1=1/ab 2007-08-14 14:19:47 補充: The plus sign ( ) could not be displayed, it should be,(2^ -2)*(3^ -3) + (2^ -3)*(3^ -2) = (1/22)*(1/33) + (1/23)*(1/32)= (1/4)*(1/27) + (1/8)*(1/9)= 1/108 + 1/72= 2/216 + 3/216= 5/216

其他解答:

2^-2x3^-3+2^-3x3^-2 =1/2^2x1/3^3+1/2^3x1/3^2<---x^-y=1/x^y =1/4x1/9+1/8x1/9 =1/36+1/72 =(2+1)/72 =3/72 =1/24 (1/ab^-1)^-1 =[1/(1/ab)]^-1 =ab^-1 =1/ab (1^1+2^2+3^3+4^4)^0 =1<---(x^0=1)
arrow
arrow
    創作者介紹
    創作者 hsf272g 的頭像
    hsf272g

    航空百大

    hsf272g 發表在 痞客邦 留言(0) 人氣()