標題:
此文章來自奇摩知識+如有不便請留言告知
maths
發問:
(2^2)*(3^3)+(2^3)*(3^2) (1/ab^1)^1 (1^1+2^2+3^3+4^4)^0 要列式 更新: 發錯..係(2^ -2)*(3^ -3)+(2^ -3)*(3^ -2) 同(1/ab^ -1)^ -1
最佳解答:
(2^2)*(3^3)+(2^3)*(3^2) = (2^2)*(3^2)*(3+2) = 4*9*5 = 180 (1/ab^1)^1 = (1/ab)^1 = 1/ab (1^1+2^2+3^3+4^4)^0 = (1+4+27+256)^0 = 1 2007-08-14 14:13:59 補充: OK, New questions(2^ -2)*(3^ -3) (2^ -3)*(3^ -2) = (1/22)*(1/33) (1/23)*(1/32)= (1/4)*(1/27) (1/8)*(1/9)= 1/108 1/72= 2/216 3/216= 5/216(1/ab^-1)^-1=(1/ab)^(-1*-1) Note: (x^a)^b = x^(ab)=(1/ab)^1=1/ab 2007-08-14 14:19:47 補充: The plus sign ( ) could not be displayed, it should be,(2^ -2)*(3^ -3) + (2^ -3)*(3^ -2) = (1/22)*(1/33) + (1/23)*(1/32)= (1/4)*(1/27) + (1/8)*(1/9)= 1/108 + 1/72= 2/216 + 3/216= 5/216
其他解答:
2^-2x3^-3+2^-3x3^-2 =1/2^2x1/3^3+1/2^3x1/3^2
留言列表