close
此文章來自奇摩知識+如有不便請留言告知
標題:
Maths
發問:
Find the general solution of 6 cos 2x + 8 sin 2x = 9
最佳解答:
Transform 6 cos 2x + 8 sin 2x to Rcos(2x - a) = Rcos 2x cos a + Rsin 2x sin a That is R cos a = 6 .........(1) and R sin a = 8 ...........(2) so R = sqrt (36 + 64) = 10 a = arc tan ( 8/6) = 53.13 degree. The equation becomes 10 cos (2x - 53.13) = 9 so 2x - 53.13 = arc cos (9/10) = 25.84 degree General solution : 2x - 53.13 = 2nπ +/- 25.84 x = nπ +/- 12.92 + 26.56 x = 13.64, 39.48, 193.64, 219.48, ........ 2012-11-21 08:51:19 補充: x can also be written as : x = nπ + 39.48 or x = nπ + 13.64. n = 0,1,2,3, .......
其他解答:C8D74AB62542840B
文章標籤
全站熱搜
留言列表